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Abstract

We present a new tool, ADIC2, for automatic differentiation (AD) of C and C++ code
through source-to-source transformation. ADIC2 is the successor of the ADIC differentiation
tool, which supports forward mode AD of C and a small subset of C++. ADIC2 was completely
redesigned and reimplemented as part of the OpenAD software framework, resulting in a ro-
bust, flexible, and extensible tool for differentiating C and some features of C++, with plans for
full support of C++ in the near future. We discuss some of the challenges in creating AD tools
for C and C++ in general and describe the component approach employed in the design and
implementation of ADIC2.
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1. Introduction

Automatic differentiation (AD) [1] is a process for producing derivative computations from
computer programs. The resulting derivatives are accurate to machine precision with respect to
the original computation and can be used in many contexts, including uncertainty quantification,
numerical optimization, nonlinear partial differential equation solvers, or the solution of inverse
problems using least squares. Many tools provide AD for different languages, including Fortran,
C, Matlab, and C++ (e.g., [1, 2, 3, 4]). AD tools generally adopt one of two implementation
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approaches: operator overloading (in languages that support it) or source transformation. Oper-
ator overloading-based tools are generally easier to implement, but because they rely on runtime
evaluation of partial derivatives, the ways in which the chain rule associativity can be exploited
to attain better performing derivative code are limited. Source transformation approaches can
exploit static analysis over an entire program and thus can potentially produce better performing
derivative code. Source transformation-based AD has the same limitations as traditional com-
pilers, however, the difficulty of implementing parsing and analysis infrastructure for complex
languages, as well as reliance on necessarily conservative static analysis (e.g., alias analysis in C
or C++), which may lead to generating suboptimal derivative code. In this paper we introduce
ADIC2 [5], an AD tool that takes the source transformation approach to provide differentia-
tion capabilities for C and C++. ADIC2 is part of the OpenAD [6] project, which includes the
independently developed XAIFBooster [7] and OpenAnalysis [8] components.

The first implementation of ADIC [3] generates derivatives for C code by using the forward
mode of AD, with support for reverse mode at the statement level. In cases when the number
of dependent variables is much smaller than the number of independent variables, the reverse
mode of differentiation can result in better-performing derivative code or enable the solution of
problems for which forward-mode AD derivatives are infeasible because of excessive memory
requirements or computational cost. Implementing reverse-mode differentiation is significantly
more involved, however, and was thus not completed in the first version of ADIC. Furthermore,
C++ support was very limited because of the reliance on the Sage++ research compiler infras-
tructure, which did not provide robust support for C++.

ADIC2 builds on the successful design ideas of ADIC (e.g., the use of a language-independent
intermediate program representation and multiple independent differentiation modules) and ad-
dresses the challenges of parsing C and C++ by leveraging the compiler infrastructure developed
by the ROSE project [9, 10] at Lawrence Livermore National Laboratory. ROSE adopted and
significantly extended the Sage++ research compiler infrastructure (used in the first version of
ADIC) to create Sage III, a high-level abstract syntax tree (AST) representation that provides
extensive support for traversals and transformations. ROSE relies on the commercial C and
C++ parsers developed by the Edison Design Group (EDG) [11], which also underlie a number
of commercial C++ compilers. EDG is the only closed source ADIC2 prerequisite; however,
ROSE includes a free binary distribution of EDG C/C++ parsers for a number of platforms, en-
suring continuous and robust parsing support for these languages. While some of the design ideas
are similar to those in ADIC, ADIC2 was completely reimplemented to use ROSE and interface
to OpenAnalysis program analysis algorithms and OpenAD differentiation modules. Before we
discuss the implementation in more detail, we present an example of derivative code produced
with ADIC2.

Figure 1(a) shows an example input code that employs a pointer type, basic arithmetic, and
a function call to an intrinsic function. Any valid C and certain C++ features are also sup-
ported. Figure 1(b) shows the forward-mode derivative code generated by ADIC2 (using the
BasicBlockPreaccumulation XAIFBooster algorithm). A driver program (not shown) contains
initializations including setting up the independent variable (in this case, x) and produces results
shown in Fig. 1(c) comparing derivatives computed analytically, through divided differences with
a δh value of 0.001, and by using the ADIC2-generated code in Fig. 1(b).

Analogously, Fig. 2 shows the reverse mode derivative code generated by ADIC2 (using the
BasicBlockPreaccumulationReverse XAIFBooster algorithm). The driver for the reverse mode
differs slightly from the one used for the results in Fig. 1 in that the user must specify the depen-
dent variable and extract the result from the gradient portion of the independent variable. ADIC2
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(a) Original code:

# i n c l u d e <math . h>

vo id foo ( d oub l e ∗y , do ub l e x )
{

∗y = x + s i n ( x ∗ x ) ;
}

(b) Generated forward-mode AD code:

# i n c l u d e ” a d t y p e s . h ”
# i n c l u d e <math . h>
vo id a d f o o ( DERIV TYPE ∗y , DERIV TYPE ∗x )
{

DERIV TYPE ad TempVarprop 0 ;
do ub l e ad TempVaracc 0 ;
do ub l e ad TempVar l in 2 ;
do ub l e ad TempVar l in 1 ;
do ub l e ad TempVar l in 0 ;
do ub l e ad TempVarSymbol 0 ;
do ub l e ad TempVartmp 0 ;
ad TempVartmp 0 = DERIV val ( ∗x ) ∗ DERIV val ( ∗x ) ;
ad TempVarSymbol 0 = DERIV val ( ∗x ) + s i n ( ad TempVartmp 0 ) ;
ad TempVar l in 0 = DERIV val ( ∗x ) ;
ad TempVar l in 1 = DERIV val ( ∗x ) ;
ad TempVar l in 2 = cos ( ad TempVartmp 0 ) ;
DERIV val ( ∗y ) = ad TempVarSymbol 0 ;
ad TempVaracc 0 = 1 + ( ad TempVar l in 0 + ad TempVar l in 1 )

∗ ad TempVar l in 2 ;
ADIC SetDeriv ( DERIV TYPE ref ( ∗x ) , DERIV TYPE ref ( ad TempVarprop 0 ) ) ;
ADIC Sax ( ad TempVaracc 0 , DERIV TYPE ref ( ad TempVarprop 0 ) ,

DERIV TYPE ref ( ∗y ) ) ;
}

(c) Results:

Analytic result is: [1.968912]

DD result is: [1.968997] error {-8.45e-05}

AD result is: [1.968912] error {0.00e+00}

Figure 1: (a) Example input code; (b) generated forward-mode differentiated code; (c) results obtained through different
differentiation approaches.

supports both scalar and vector differentiation modes.
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(a) Generated adjoint code:

# i n c l u d e ” a d t y p e s . h ”
# i n c l u d e <math . h>
vo id a d f o o ( DERIV TYPE ∗y , DERIV TYPE ∗x )
{

i f ( ( o u r r e v m o d e . p l a i n ) == 1) {
DERIV val ( ∗y ) = DERIV val ( ∗x ) + s i n ( DERIV val ( ∗x )

∗ DERIV val ( ∗x ) ) ;
}

i f ( ( o u r r e v m o d e . t a p e ) == 1) {
do ub l e ad TempVartmp 0 ;
do ub l e ad TempVarSymbol 0 ;
do ub l e ad TempVar l in 0 ;
do ub l e ad TempVar l in 1 ;
do ub l e ad TempVar l in 2 ;
do ub l e ad TempVaracc 0 ;
ad TempVartmp 0 = DERIV val ( ∗x ) ∗ DERIV val ( ∗x ) ;
ad TempVarSymbol 0 = DERIV val ( ∗x ) + s i n ( ad TempVartmp 0 ) ;
ad TempVar l in 0 = DERIV val ( ∗x ) ;
ad TempVar l in 1 = DERIV val ( ∗x ) ;
ad TempVar l in 2 = cos ( ad TempVartmp 0 ) ;
DERIV val ( ∗y ) = ad TempVarSymbol 0 ;
ad TempVaracc 0 = 1 + ( ad TempVar l in 0 + ad TempVar l in 1 )

∗ ad TempVar l in 2 ;
ADIC push ( ad TempVaracc 0 ) ;

}

i f ( ( o u r r e v m o d e . a d j o i n t ) == 1) {
do ub l e ad TempVarSymbol 1 ;
DERIV TYPE ad TempVarprop 0 ;
ADIC ZeroDeriv ( DERIV TYPE ref ( ad TempVarprop 0 ) ) ;
ADIC pop ( ad TempVarSymbol 1 ) ;
ADIC Saxpy ( ad TempVarSymbol 1 , DERIV TYPE ref ( ∗y ) ,

DERIV TYPE ref ( ad TempVarprop 0 ) ) ;
ADIC ZeroDeriv ( DERIV TYPE ref ( ∗y ) ) ;
ADIC IncDeriv ( DERIV TYPE ref ( ad TempVarprop 0 ) , DERIV TYPE ref ( ∗x ) ) ;
ADIC ZeroDeriv ( DERIV TYPE ref ( ad TempVarprop 0 ) ) ;

}

}

(b) Results:

Analytic result is: [1.968912]

DD result is: [1.968997] error {-8.45e-05}

AD result is: [1.968912] error {0.00e+00}

Figure 2: Generated reverse-mode differentiated code (a) and comparison with the analytic derivative and divided differ-
ences (b).
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Figure 3: Overview of the ADIC2 differentiation process. The sequence of steps is indicated by numbers embedded in
arrows connected to the corresponding components implementing them.

2. Design and Implementation

ADIC2 is part of the OpenAD [6] project, which encompasses multiple, independently de-
veloped software components, including XAIFBooster [7], OpenAnalysis [8], and parsing and
code generation support for Fortran, C, and C++. Figure 3 illustrates the portions of the Ope-
nAD infrastructure that are integrated in ADIC2. In the remainder of this section we describe the
ADIC2 implementation following the sequence of a typical differentiation workflow.

2.1. Compiler Frontend: Parser and Analysis
As indicated in the first step in Fig. 3, ADIC2 relies on the ROSE compiler framework to

parse the input source code and generate an abstract syntax tree (AST) consisting of Sage III
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nodes [9, 10]. ROSE provides access to AST nodes through hierarchical traversals including
TopDown, BottomUp, and TopDownBottomUp. Modifications to existing nodes and addition
of new nodes are possible during traversals. Nodes can be decorated with attributes that persist
between visits in a single traversal or multiple separate traversals. ADIC2 first identifies nodes of
interest and sets relevant attributes for them during a TopDownBottomUp traversal. For example,
ADIC2 is concerned only with nodes representing floating-point values. Therefore, it identifies
such nodes and sets an attribute to designate them as differentiable As another example, each
scope statement (code contained within curly braces in C/C++) is assigned a unique number to
be used for identification in later steps. The last task in this step is to add certain data structures
that are not provided by ROSE but are convenient to have with ADIC2 in order to support later
differentiation stages. One of the development challenges faced by ADIC2 is the close coupling
with the ROSE interfaces and implementation. Changes in ROSE can result in failures in ADIC2
that can only be fixed by pervasive updates. As ROSE matures, we expect that such updates will
become easier and less frequent.

ADIC2 also reads one or more configuration files, in which users can specify various settings
such as differentiation module parameters, inactive symbols (e.g., types, variables, or functions
that do not lie on the computational path between independent and dependent variables), and
other parameters that are used to fine-tune the differentiation process. For example, users can
supplement the analysis capabilities in ADIC2 (see Sec. 2.3) by explicitly indicating that certain
functions or types are inactive and thus improving the performance of the differentiated code.

2.2. Canonicalization
The principal function of the second phase (see arrow labeled with 2 in Fig. 3) of the ADIC2

workflow is to modify differentiable variable declarations and references such that the Sage III
AST can be interfaced efficiently with other components of ADIC2. In addition, complex control
flows are simplified for later stages through the traversal of all the statements present in the top-
level SgProject AST node that represents the entire source code. The following list outlines the
actions taken for a subset of the nodes of interest.

• Variable declaration. The type of all differentiable (i.e., floating-point) variables is
converted to a new type, DERIV TYPE, which is defined in a header file automatically
included in the differentiated code. For example, one commonly used type is a struct
containing a scalar field for the original value and an array to hold the computed partial
derivative values. For forward mode, the size of the array depends on the number of in-
dependent variables in the code. The names of differentiable variables are prefixed with
a user-defined prefix that is usually ad but can be customized by the user. Challenges in
canonicalizing declarations include proper handling of typedef statements and traversing
type hierarchies, correctly identifying those that are relevant to differentiation.

• Function definition. Because C does not support struct return types, if a function returns
a value of a differentiable type, a special variable ad var ret of type DERIV TYPE * is
added to the function’s argument list, and all return statements in the function definition
are converted to assignments to *ad var ret.

• Function call. If return value of a function is differentiable and assigned to a variable x,
then &x is added to the argument list of the function call to accommodate the change in
the function declaration return value described earlier. Scalar arguments of differentiable
types are converted to references to pointers of DERIV TYPE.
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• For loop. In order to simplify further phases, a dummy basic block is added immediately
after the for loop statement for use in later steps.

• If statement. The conditional expression is hoisted out of the statement and is assigned to
a new Boolean variable. In order to simplify further phases, a dummy basic block is added
immediately after the conditional statement.

2.3. Analysis

In the next step (see arrow labeled with 3 in Fig. 3) the canonicalized AST serves as input
to OpenAnalysis, a representation -independent program analysis toolkit [8, 12]. ADIC2 uses
OpenAnalysis through the interface UseOA-ROSE [13], which provides program information
to analysis algorithms without exposing them to the particulars of the Sage III data structures.
The analysis results are used to reduce the amount of code that is passed to the differentiation
algorithms later and to ensure the accuracy of differentiated code. ADIC2 currently applies the
following analyses from OpenAnalysis: call graph and control flow graph (CFG) construction,
side effects, def-use and use-def chains, def-overwrite chains, and alias analysis. Activity analy-
sis will be also integrated in the near future.

UseOA-ROSE connects ROSE and OpenAnalysis, and thus its implementation must track
changes in both packages. Until recently, OpenAnalysis had been evolving rapidly in several de-
velopment branches. To enable support for reverse mode differentiation in ADIC2, we success-
fully merged some of these branches and continue to participate in OpenAnalysis development,
with the eventual goal of having the same OpenAnalysis algorithm implementations used in the
different parts of the OpenAD framework.

2.4. XAIF Generation

In the next phase (see arrow labeled with 4 in Fig. 3), the OpenAnalysis results and AST in-
formation are merged and expressed in the XML Abstract Interface Form (XAIF) [14, 15]. XAIF
provides a language-independent representation of constructs common in imperative languages,
such as C, C++, and Fortran. It also allows the embedding of annotations or pointers back to the
corresponding language-dependent AST node from which they were created. Constructs that are
not used for the differentiation (transformation) can be included and designated as marked state-
ments, which are subsequently ignored (and preserved) by the transformation algorithms. These
statements are also used to delimit sequences of statements that must be transformed. Special
constructs exist in XAIF to express OpenAnalysis results.

The merging process involves iterating through OpenAnalysis data results and converting the
associated Sage III SgNodes into XAIF nodes. Special treatment of iterative and conditional
statements is required because Sage III, OpenAnalysis, and XAIF have different representations
for these structures. Expression statements in particular require a traversal through the Sage III
subtree rooted at the expression statement. The XAIF file is not generated directly during the
traversals; instead, a graph-based representation is first created in memory and later traversed to
produce the XAIF files that serve as input to transformation algorithms.

2.5. Transformation Algorithms

ADIC2 next invokes XAIFBooster (or potentially any other transformation module that sup-
ports XAIF) to produce a differentiated XAIF file (see arrow labeled with 5 in Fig. 3). Both
forward and reverse modes of differentiation are supported.
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2.6. Merging of Differentiated Code into AST

The XAIF output generated by the transformation algorithms is parsed, and a corresponding
graph-based representation is created by using an event-based (SAX2) XML parser (see arrow
labeled with 6 in Fig. 3). The graph is traversed once in a depth-first manner; and at each node
or edge, visitor methods are used to integrate the transformed XAIF nodes into the Sage III AST.
For example, in ADIC2, we use two visitors: one that converts the XAIF to Sage III node and
another to output the nodes for debugging purposes.

In forward-mode differentiation, the output of the transformation algorithms contains trans-
formed expression statements and marker statements that point to where the expression state-
ments should be inserted into the ROSE AST. Often the transformed expression statements re-
quire the creation of new Sage III nodes that do not exist in the original AST. In reverse-mode
differentiation, marker statements are not available in the reversed computation generated by the
transformation algorithm. Therefore, ADIC2 has to create complete control flow structures, in-
cluding basic blocks, if statements, and loop statements. One of the challenges is that the CFG
elements in the XAIF schema do not directly correspond to the data structures in the Sage III
AST. Specifically, the XAIF does not have a concept of loop body, conditional statement body
or scope statement. Therefore, ADIC2 has to create and maintain additional information and use
logic outside that provided by the XAIF to create these structures correctly.

2.7. Compiler Backend

ADIC2 uses ROSE unparsing functionality to create the output code from the modified AST
(see arrow labeled with 7 in Fig. 3). ADIC2 provides runtime libraries and header files required
for compiling the transformed code.

3. Related Work

As mentioned in Sec. 1, AD tools for C/C++ can be classified according to their imple-
mentation approach. One method is to use C++ operator overloading, an approach adopted by
a number of tools, including ADOL-C [16], CppAD [17], FAD [18], FADBAD/TADIFF [19],
FFADLib [20], and Rapsodia [21].

The differentiation approach used in ADIC2 is source-to-source transformation. In other
words, the input source code is transformed into a new code augmented with derivative com-
putations. TAPENADE [22] is another source transformation-based AD tool that differentiates
C and Fortran programs by using a tool-specific language-independent internal representation.
Handling object-oriented input is stated as one of the eventual goals. It performs its parsing
and source analysis internally. TAC++ [23] is a source-to-source translator that supports both
forward- and reverse-mode differentiation and is proposed as the C++ language counterpart of
TAF. It can currently handle a number of C features (e.g., variables of the type as scalar int and
scalar double, arrays, typedef types, and pointer types). It also supports basic arithmetic opera-
tions, intrinsic functions, control flow statements, and function calls. It is not clear to us at the
time of this writing what C++ features are handled by TAC++.

ADIC2 differs from other C/C++ source transformation-based AD tools in several ways.

• ADIC2 consists of a number of loosely coupled components, some of which are also used
by OpenAD/F for support of Fortran. The component design enables independent devel-
opment of AD algorithms, language-specific support, and program analyses.
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• ADIC2 uses the XAIF language-independent intermediate representation, which is not
tool-specific and thus can be used to leverage any differentiation approach that can process
XAIF as input and produce XAIF output.

• ADIC2 is based on robust compiler infrastructure, including the commercial EDG C/C++

frontend, which ensures that all language features are parsed correctly.

While ADIC2’s support for C++ is not complete at present, it is under active development,
with a focus on C++-specific canonicalization and correct handling of templates.

4. Conclusions and Future Work

We have described the design and implementation of the ADIC2 system for differentiating C
and C++ codes. As part of the OpenAD project, this tool is the first C/C++ AD tool that shares
a number of components with its independently developed Fortran counterpart, OpenAD/F. The
modular design of the OpenAD infrastructure allows the reuse of program analysis and differen-
tiation modules. This enables access to new analysis and differentiation methods from different
languages without having to reimplement them. Furthermore, relying on robust external com-
piler infrastructure ensures that few if any manual code modifications are required before a code
can be differentiated.

ADIC currently handles one input file at a time, but we plan to enable simultaneous differen-
tiation of projects containing multiple source code files as input (this capability is supported by
ROSE). This requires careful handling of shared data structures as well as the ability to recognize
the portions of the project relevant to ADIC2 based on minimal user input. ADIC2 is also con-
tinuously being extended to handle more complex features of C++ (e.g., user-defined templates
and everything in the standard template library). In the long term we also plan to explore hybrid
source transformation/operator overloading strategies for supporting C++ templated codes for
which it may not be possible to determine active types statically.

We are working on integrating activity analysis results into the XAIF input provided to trans-
formation modules. We will continue to explore different analyses that can help generate more
efficient derivative code. For example, we plan to integrate more accurate array section analysis
(currently OpenAnalysis does not take array reference indices into account in data flow analyses).

In the next few months, we will begin applying ADIC2 to applications and compare the
performance of the generated code to that produced by other AD tools when possible. We are
integrating ADIC2 into libraries such as PETSc [24], which currently uses the first version of
ADIC to automatically provide Jacobians for applications involving the nonlinear solution of
partial differential equations [25].
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